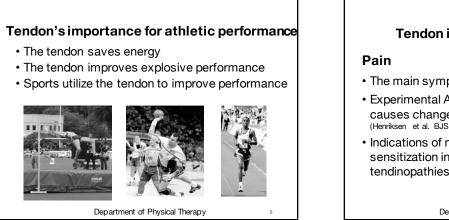
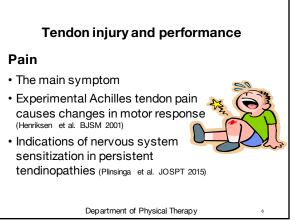

# **Tendinopathy and Sports**











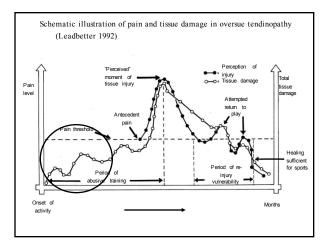



### Tendon injury and performance

Changes in mechanical properties and performance

#### In Symptomatic subjects

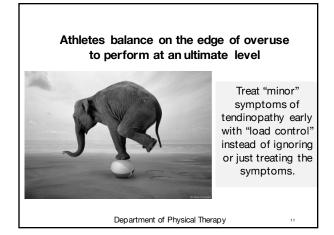
- Tendinopathic tendons has lower tendon stiffness and elastic modulus (Arya et al JAP 2010, Child et al AJSM 2010)
- Altered Achilles tendon viscoelastic properties affect explosive performance in athletes (Wang et al SJMSS 2012)
- Altered stretch-shortening cycle behavior during submaximal hopping (Debenham et al JSMS 2014)
- Triceps surae activation is altered in runners with Achilles tendinopathy (Wyndow et al. JEK 2013)

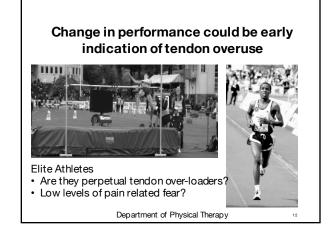

Department of Physical Therapy

# **Tendon injury and performance** Changes in mechanical properties and performance

#### In Asymptomatic subjects (tendinosis and previous tendinopath

- Asymptomatic runners (previous Achilles tendinopathy) exhibit changes in knee kinetics during running, indicating permanent changes in knee biomechanics (Williams et al JOSP<sup>2008</sup>)
- Achilles tendinosis result in a more compliant tendon (Charg Kulig 2015)
- The compliant tendon elicit a series of neuromechanical adaptations (Chang & Kulig J Physiol 2015)


Department of Physical Therapy



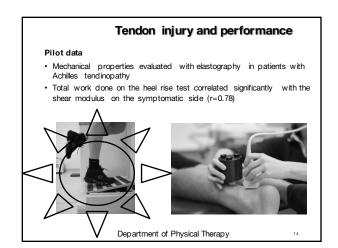

### The problem starts before the "injury"

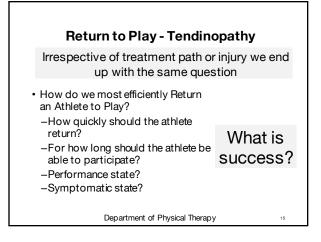
- Insidious onset listen to early symptoms indications
- Training errors contributing in 60-80% of those with Achilles tendinopathy (Järvinen et al. 2005, Kvist 1991)
- Greater mileage and running years in injured runners (Haglund-Åkerlind et al. 1993)

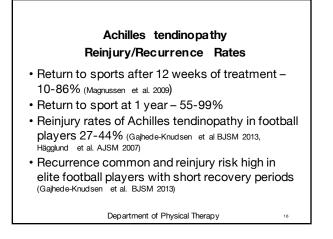
Department of Physical Therapy

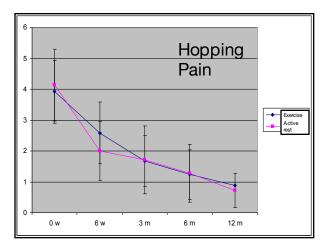


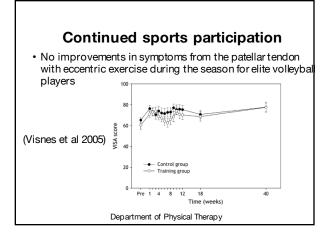


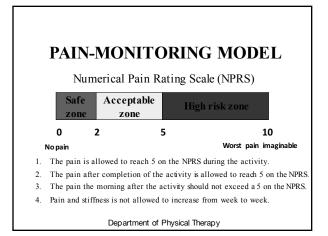

#### Tendon injury and performance

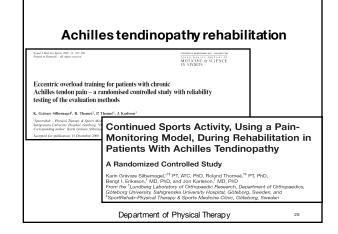

#### ORIGINAL ARTICLE

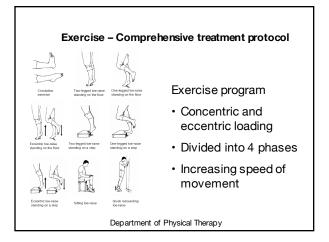

Full symptomatic recovery does not ensure full recovery of muscle-tendon function in patients with Achilles tendinopathy Karin Grävare Silbemagel, Roland Thomeé, Bengt I Eriksson, Jan Kartson

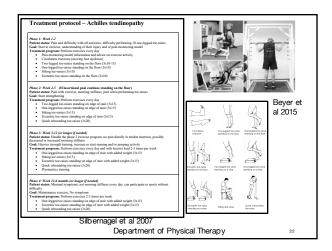




Department of Physical Therapy

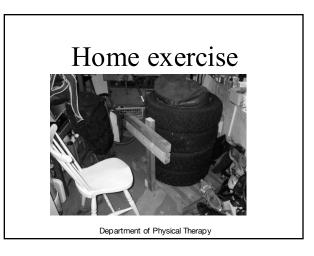


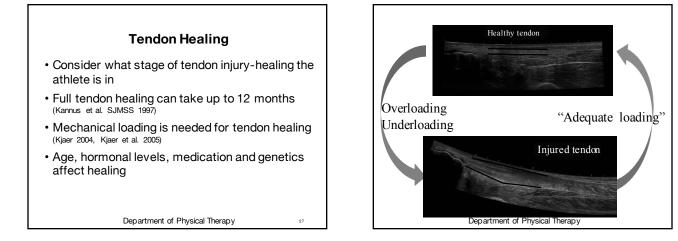



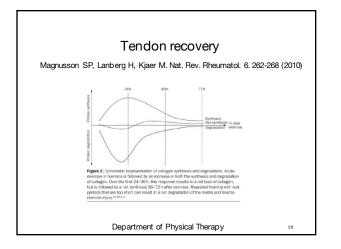



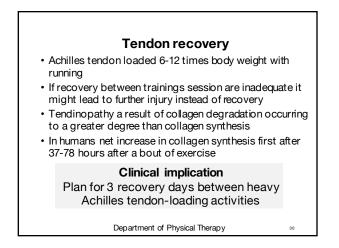


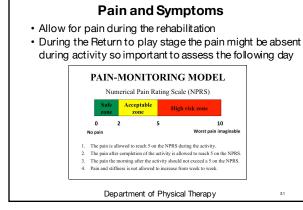



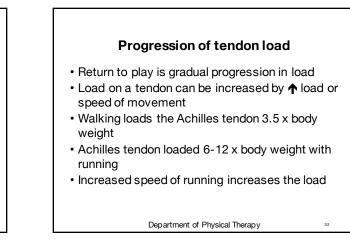




|           | Trai           | PAIN-MONITORING MODEL<br>Numerical Pain Range Scale (NPRS) |          |  |
|-----------|----------------|------------------------------------------------------------|----------|--|
|           | erapist:       |                                                            |          |  |
| Week<br># | Home exercises | Physical activity                                          | Comments |  |
| Day 1     |                |                                                            |          |  |
| Day 2     |                |                                                            |          |  |







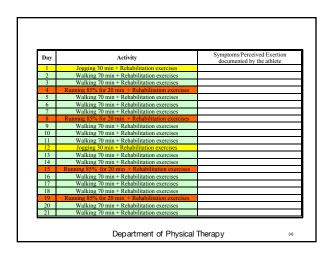









Department of Physical Therapy


33



The athlete's rating of perceived exertion of the Achilles tendon

| TABLE 4 | THE BORG CATEGORY-RATIO RATIN<br>OF PERCEIVED EXERTION SCALE <sup>11</sup> | Ĩ |
|---------|----------------------------------------------------------------------------|---|
| Score   | Description                                                                |   |
| 0       | Nothing at all                                                             |   |
| 0.5     | Very, very weak                                                            |   |
|         | Very weak                                                                  |   |
| 2       | Weak                                                                       |   |
| 3       | Moderate                                                                   |   |
| 4       | Somewhat strong                                                            |   |
| 5       | Strong                                                                     |   |
| 6       |                                                                            |   |
| 7       | Very strong                                                                |   |
| 8       |                                                                            |   |
| 9       |                                                                            |   |
| 10      | Very, very strong                                                          |   |

| The Classification Schema       |                                                     |                                                           |                                                                         |                                                  |                                                     |  |  |  |  |
|---------------------------------|-----------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|--|--|--|--|
| Classification<br>of activities | Pain level<br>during<br>activity<br>NPRS (0-<br>10) | Pain level<br>after activity<br>(next day)<br>NPRS (0-10) | The Athlete's RPE<br>(with regards to<br>the Achilles<br>tendon) (0-10) | Recovery days<br>needed<br>between<br>activities | Examples of<br>activities for<br>a runner           |  |  |  |  |
| Light                           | 1-2                                                 | 1-2                                                       | 0-1                                                                     | 0 days (can be performed daily)                  | Walking for<br>70 min                               |  |  |  |  |
| Medium                          | 2-3                                                 | 3-4                                                       | 2-4                                                                     | 2 days                                           | Jogging on<br>flat surface<br>for 30 min            |  |  |  |  |
| High                            | 4-5                                                 | 5-6                                                       | 5-10                                                                    | 3 days                                           | Running 85%<br>of pre-injury<br>speed for 20<br>min |  |  |  |  |
|                                 | Department of Physical Therapy 35                   |                                                           |                                                                         |                                                  |                                                     |  |  |  |  |



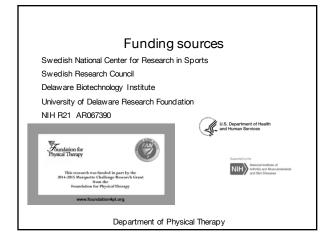
#### 62 year old runner Email 2 years after initiation of program At start of program unable to run

"Been a very good summer. The best pain free, injury free summer in ten years. I did nine races this summer, eight sprint triathlons and one olympic. Generally faster races than last year. Yesterday ran over ten miles with zero issues. One of the sprints I missed a transition area and ran barefoot for 5k in just over eight minute miles. Most of my races I am in the 8.45s range but did one in 8.12s and the 8.05s I mentioned. This is significantly faster."

Department of Physical Therapy

### Principles of Tendon Return-to-Sport program

- Progressively increase the demand on the tendon by controlling intensity, duration and frequency of Achilles tendon loading
- Continue with the rehabilitation exercises (tendon loading) during the return to sport phase (and continue for at least a year)
- Education
  - -Easiest to educate about this phase when the athlete has a lot of symptoms
- Training diaries
- Initiate program early when athlete can perform activities of daily living with pain no higher than 2/10


Department of Physical Therapy

## Take home message

- Full recovery of tendon "function" important for performance and does not directly relate to symptoms
- Treat minor symptoms of tendinopathy early with "load control" instead of ignoring
- Consider changes in sports performance as a possible sign of tendon overuse
- Use the Return to Play program as a model to individualize for each patient

Department of Physical Therapy







# Tendinopathy and Sports Karin Grävare Silbernagel PT, ATC, PhD

References:

- 1. Almonroeder T, Willson JD, Kernozek TW, Lmonroeder THA, Illson JOHNDW, Ernozek THWK. The effect of foot strike pattern on achilles tendon load during running. *Ann Biomed Eng*. 2013;41(8):1758-1766. doi:10.1007/s10439-013-0819-1.
- 2. Arya S, Kulig K. Tendinopathy alters mechanical and material properties of the Achilles tendon. *J Appl Physiol*. 2010;108(3):670-675. doi:10.1152/japplphysiol.00259.2009.
- 3. Beyer R, Kongsgaard M, Hougs Kjaer B, Ohlenschlaeger T, Kjaer M, Magnusson SP. Heavy Slow Resistance Versus Eccentric Training as Treatment for Achilles Tendinopathy: A Randomized Controlled Trial. *Am J Sports Med.* 2015;43(7):1704-1711. doi:10.1177/0363546515584760.
- 4. Borg G. *Borg's Perceived Exertion and Pain Scales*. Champaign, Ill. ; Leeds: Human Kinetics; 1998.
- 5. Chang Y-J, Kulig K. The neuromechanical adaptations to Achilles tendinosis. *J Physiol*. 2015;593(15):3373-3387. doi:10.1113/JP270220.
- Child S, Bryant AL, Clark RA, Crossley KM. Mechanical properties of the achilles tendon aponeurosis are altered in athletes with achilles tendinopathy. *Am J Sport Med*. 2010;38(9):1885-1893. doi:0363546510366234 [pii]10.1177/0363546510366234.
- 7. Debenham JR, Travers MJ, Gibson W, Campbell A, Allison GT. ARTICLE IN PRESS G Model Achilles tendinopathy alters stretch shortening cycle behaviour during a sub-maximal hopping task. *J Sci Med Sport J Sci Med Sport*. December 2014. doi:10.1016/j.jsams.2014.11.391.
- Gajhede-Knudsen M, Ekstrand J, Magnusson H, Maffulli N. Recurrence of Achilles tendon injuries in elite male football players is more common after early return to play: an 11year follow-up of the UEFA Champions League injury study. *Br J Sports Med*. 2013;47:763-768. doi:10.1136/bjsports-2013-092271.
- 9. Hagglund M, Walden M, Ekstrand J. Lower reinjury rate with a coach-controlled rehabilitation program in amateur male soccer: a randomized controlled trial. *Am J Sport Med*. 2007;35(9):1433-1442. doi:0363546507300063 [pii]10.1177/0363546507300063.
- Haglund-Åkerlind Y, Eriksson E. Range of motion, muscle torque and training habits in runners with and without Achilles tendon problems. *Knee Surg Sport Traumatol Arthrosc*. 1993;1(3-4):195-199. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati
- on&list\_uids=8536028.
  11. Henriksen M, Aaboe J, Graven-Nielsen T, Bliddal H, Langberg H. Motor responses to experimental Achilles tendon pain. *Br J Sport Med*. 2011;45(5):393-398. doi:10.1136/bjsm.2010.072561.
- 12. Jarvinen TA, Kannus P, Maffulli N, Khan KM. Achilles tendon disorders: etiology and epidemiology. *Foot Ankle Clin*. 2005;10(2):255-266. doi:S1083-7515(05)00014-8 [pii]10.1016/j.fcl.2005.01.013.

- Kannus P. Etiology and pathophysiology of chronic tendon disorders in sports. Scand J Med Sci Sport. 1997;7(2):78-85. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list\_uids=9211608.
- 14. Kjaer M, Langberg H, Miller BF, et al. Metabolic activity and collagen turnover in human tendon in response to physical activity. *J Musculoskelet Neuronal Interact*. 2005;5(1):41-52.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list\_uids=15788870.

- Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. *Physiol Rev.* 2004;84(2):649-698. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list\_uids=15044685.
- 16. Kvist M. Achilles tendon injuries in athletes. *Ann Chir Gynaecol*. 1991;80(2):188-201. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list\_uids=1897886.
- 17. Leadbetter WB. Cell-matrix response in tendon injury. *Clin Sport Med*. 1992;11(3):533-578.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list\_uids=1638640.

- 18. Lorimer A V, Hume PA. Achilles Tendon Injury Risk Factors Associated with Running. 2014. doi:10.1007/s40279-014-0209-3.
- 19. Magnussen RA, Dunn WR, Thomson AB. Nonoperative treatment of midportion Achilles tendinopathy: a systematic review. *Clin J Sport Med*. 2009;19(1):54-64. doi:10.1097/JSM.0b013e31818ef09000042752-200901000-00011 [pii].
- 20. Magnusson SP, Langberg H, Kjaer M. The pathogenesis of tendinopathy: balancing the response to loading. *Nat Rev Rheumatol*. 2010;6(5):262-268. doi:10.1038/nrrheum.2010.43.
- 21. Plinsinga M. Evidence of Nervous System Sensitization in Commonly Presenting and Persistent Painful Tendinopathies: A Systematic Review. 2015;(SEPTEMBER). doi:10.2519/jospt.2015.5895.
- Silbernagel K, Gustavsson A, Thomee R, Karlsson J. Evaluation of lower leg function in patients with Achilles tendinopathy. *Knee Surg Sport Traumatol Arthrosc*.
   2006;14(11):1207-1217. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati
- on&list\_uids=16858560.
   23. Silbernagel KG, Crossley KM. A Proposed Return to Sport Program for Patients With Midportion Achilles Tendinopathy: Rationale and Implementation. J Orthop Sport Phys Ther. September 2015:1-42. doi:10.2519/jospt.2015.5885.
- Silbernagel KG, Thomeé R, Eriksson BI, Karlsson J. Full symptomatic recovery does not ensure full recovery of muscle-tendon function in patients with Achilles tendinopathy. *Br J Sports Med*. 2007;41(4):276-280; discussion 280. doi:10.1136/bjsm.2006.033464.
- 25. Silbernagel KG, Thomee R, Eriksson BI, et al. Continued Sports Activity, Using a Pain-Monitoring Model, During Rehabilitation in Patients With Achilles Tendinopathy: A

Randomized Controlled Study. *Am J Sports Med*. 2007;35(6):897-906. doi:10.1177/0363546506298279.

- 26. Silbernagel KG, Thomeé R, Thomeé P, Karlsson J. Eccentric overload training for patients with chronic Achilles tendon pain--a randomised controlled study with reliability testing of the evaluation methods. *Scand J Med Sci Sport*. 2001;11(4):197-206. doi:10.1034/j.1600-0838.2001.110402.x.
- 27. Visnes H, Hoksrud A, Cook J, Bahr R. No effect of eccentric training on jumper's knee in volleyball players during the competitive season: a randomized clinical trial. *Clin J Sport Med*. 2005;15(4):227-234.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list\_uids=16003036.

- 28. Wang HK, Lin KH, Su SC, Shih TT, Huang YC. Effects of tendon viscoelasticity in Achilles tendinosis on explosive performance and clinical severity in athletes. *Scand J Med Sci Sport*. 2012;22(6):e147-e155. doi:10.1111/j.1600-0838.2012.01511.x.
- 29. Williams DSB, Zambardino J a, Banning V a. Transverse-plane mechanics at the knee and tibia in runners with and without a history of achilles tendonopathy. *J Orthop Sports Phys Ther*. 2008;38(12):761-767. doi:10.2519/jospt.2008.2911.
- 30. Wyndow N, Cowan SM, Wrigley T V, Crossley KM. Triceps surae activation is altered in male runners with Achilles tendinopathy. *J Electromyogr Kinesiol*. 2013;23(1):166-172. doi:10.1016/j.jelekin.2012.08.010.